基本信息
姓 名:谢铭
职 称:副教授
性 别:男
联系电话:15345694255
出生年月:1989年9月
所在学科:交通信息工程及控制/遥感科学与技术
博士导师:否
硕士导师:是
Email:mingxie@dlmu.edu.cn
个人简介
教育背景:
2015-2019,南佛罗里达大学(美国),遥感和地理信息系统专业,理学博士
2012-2014,南佛罗里达大学(美国),海岸地质专业,理学硕士
2008-2012,南京大学,地理科学专业,理学学士
工作经历:
2023-至今,大连海事大学,航海学院,副教授
2021-2023,大连海事大学,航海学院,兴海副教授/讲师
2019-2021,大连海事大学,航海学院,博士后
荣誉称号:
2023,“兴辽英才计划”,博士后储备人才
2022,大连市高层次人才,青年才俊
获奖情况:
2024年,《海上溢油紫外光学效应及识别方法》获大连海事大学优秀学术成果奖,优秀学术论文奖一等奖
2023年,《基于遥感成像探测和深度学习的船舶污染物监测识别技术》获大连海事大学优秀学术成果奖,优秀学术论文奖一等奖
2022年,《Rethinking Map Literacy》获大连海事大学优秀学术成果奖,优秀学术著作奖二等奖
研究方向
主要从事遥感和地理信息技术在海洋环境和海上交通运输领域的应用基础研究,研究方向包括海洋环境遥感、海上溢油光学遥感技术、溢油污染物荧光响应及其识别方法、基于深度学习的遥感数据挖掘、地图学及其在海图上的应用等。
科研成果
论文:近五年代表性期刊论文(第一作者或者通讯作者):
1.Ming Xie, Qin Mian, Ying Li*, Zhichen Liu, Tao Gou, 2024, “Experimental Analysis on the Optimal Spectral Index for the Risk Assessment of Red Tide Occurrence,” Journal of Oceanology and Limnology.
2.Ming Xie, Tao Gou, Shuang Dong, Ying Li*, 2024, “A Semi-Supervised Model for Fine-Grained Identification of Oil Emulsions on the Sea Surface Using Hyperspectral Imaging,” Journal of the Indian Society of Remote Sensing, 52: 2083-2097.
3.Ming Xie, Qintuan Xu, Lei Xie, Ying Li*, Bing Han, 2023, “Establishment and Optimization of the Three-Band Fluorometric Indices for Oil Species Identification: Implications on the Optimal Excitation Wavelengths and the Detection Band Combinations,” Analytica Chimica Acta, 1280: 341871.
4.Ming Xie, Lei Xie, Ying Li*, Bing Han, 2023, “Oil Species Identification Based on Fluorescence Excitation-Emission Matrix and Transformer-Based Deep Learning,” Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 302: 123059.
5.Ming Xie, Shuang Dong, Tao Gou Ying Li*, Bing Han, 2023, “Evaluation and optimization of the three-band spectral indices for oil type identification using reflection spectrum,” Journal of Quantitative Spectroscopy and Radiative Transfer, 2023: 108609.
6.Ming Xie, Xiurui Zhang, Ying Li*, Bing Han, 2023, “Automatic detection of thin oil films on water surfaces in ultraviolet imagery,” The Photogrammetric Record, 38: 47-62.
7.Ming Xie, Qintuan Xu, Ying Li*, 2023, “Deep or Shallow? A Comparative Analysis on the Oil Species Identification Based on Excitation-Emission Matrix and Multiple Machine Learning Algorithms,” Journal of Fluorescence.
8.Ming Xie, Ying Li*, Shuang Dong, 2022, “A Deep-Learning-Based Fusion Approach for Global Cyclone Detection Using Multiple Remote Sensing Data,” IEEE Journal of Selected Topics on Applied Earth Observation and Remote Sensing, 15:9613-9622.
9.Ming Xie, Ying Li*, Shuang Dong, Baochen Zhang, Tao Gou, 2022, “Fine-Grained Oil Types Identification Based on Reflectance Spectrum: Implication for the Requirements on the Spectral Resolution of Hyperspectral Remote Sensors,” IEEE Geoscience and Remote Sensing Letters 19: 6009705.
10.Ming Xie, Ying Li*, 2022, “Experimental Analysis on the Ultraviolet Imaging of Oil Film on Water Surface: Implication for the Optimal Band for Oil Film Detection Using Ultraviolet Imaging,” Archives of Environmental Contamination and Toxicology 83: 109-115.
11.Ming Xie, Yunpeng Jia, Ying Li*, Xiaohua Cai, Kai Cao, 2022, “Experimental Analysis on the Optimal Excitation Wavelength for Fine-Grained Identification of Refined Oil Pollutants on Water Surface Based on Laser-Induced Fluorescence,” Journal of Fluorescence 32(1): 257-265.
12.Ming Xie, Ying Li*, Kai Cao, 2020, “Global Cyclone and Anticyclone Detection Model Based on Remotely Sensed Wind Field and Deep Learning,” Remote Sensing 12(18): 3111.
13.Ming Xie, Zhenduo Zhang, Wenbo Zheng, Ying Li*, Kai Cao, 2020, “Multi-frame Star Image Denoising Algorithm Based on Deep Reinforcement Learning and Mixed Poisson–Gaussian Likelihood,” Sensors 20(21): 5983.
14.Ying Li, Yunpeng Jia, Xiaohua Cai, Ming Xie (通讯作者)*, Zhenduo Zhang, 2022, “Oil Pollutant Identification Based on Excitation-Emission Matrix of UV-Induced Fluorescence and Deep Convolutional Neural Network,” Environmental Science and Pollution Research 29: 68152–68160.
15.Ying Li, Shuang Dong, Qinglai Yu, Ming Xie (通讯作者)*, Zhichen Liu, Zhanjun Ma, 2021, “Numerically Modelling the Reflectance of a Rough Surface Covered with Diesel Fuel Based on Bidirectional Reflectance Distribution Function,” Optics Express 29(23): 37555-37564.
16.Ying Li, Qinglai Yu, Ming Xie (通讯作者)*, Zhenduo Zhang, Zhanjun Ma, Kai Cao, 2021, “Identifying Oil Spill Types Based on Remotely Sensed Reflectance Spectra and Multiple Machine Learning Algorithms,” IEEE Journal of Selected Topics on Applied Earth Observation and Remote Sensing, 14:9071-9078.
17.Zhenduo Zhang, Wenbo Zheng, Zhanjun Ma, Limei Yin, Ming Xie (通讯作者)*, and Yuanhao Wu, 2021, “Infrared star image denoising using regions with deep reinforcement learning,” Infrared Physics and Technology. 117:103819.
著作:
1.Ming Xie, Steven Reader*, H. L. Vacher, 2021, 《Rethinking Map Literacy》 Springer
专利:
1.李颖; 张振铎; 谢铭; 马占骏; 张照忆 ; 一种基于油膜相对厚度获取油膜衰减系数的方法, 2021-6-11, 202110653605.0
2.李颖; 张振铎; 马占骏; 谢铭 ; 一种基于油膜灰度值获取油膜衰减系数的方法, 2021-8-5, 202110898233.8
3.李颖; 贾云鹏; 谢铭; 张振铎; 蔡小华 ; 一种用于海上油膜油种鉴别的三维荧光光谱测量系统及方法, 2021-9-23, 202111117239.3
4.李颖; 贾云鹏; 蔡小华; 谢铭 ; 一种用于油膜油种鉴别的便携式被动荧光系统, 2021-10-14, 202111197677.5
5.李颖; 贾云鹏; 蔡小华; 谢铭; 张振铎 ; 一种用于油膜油种鉴别的便携式三维荧光系统, 2021-11-19, 202111401741.7
6.李颖; 刘瑀; 谢铭; 张振铎 ; 一种浮标式海底电缆绝缘介质泄漏监测系统, 2022-5-30, 202210605348 .8
科研项目
1.国家自然科学基金项目,《冰区溢油荧光光谱复合与辐射传输机理及其石油烃组分的定量反演研究》,2025.01-2027.12,主持;
2.中央高校基本科研业务费重点科学研究培育项目,《极地与深远海油膜弱目标探测》,2023.01-2025.12,主持;
3.国家重点研发计划子课题,《北极航道船舶航行信息服务技术研究及系统研发》,2021.12-2025.12,主持;
4.中国博士后科学基金会面上项目《基于深度学习和高光谱遥感的溢油信息识别研究》,2020.10-2021.11,主持;
5.辽宁省自然科学基金项目,《基于荧光响应机理和多任务深度学习的海上溢油组分定量反演研究》,2024.07-2026.06,主持;
6.大连市留学生创新创业支持计划创新类优秀项目《小型化海上溢油三维荧光光谱检测装备关键技术研究》,2021.01-2023.12,主持;
7.国家工程研究中心开放课题项目, 《IMO框架下中国航海低碳发展对策研究》, 2023.01-2024.12,主持;
8.国家重点研发计划项目,《海洋环境突发性污染事故风险防控关键技术》,2023.12-2026.11,参与;
9.国家重点研发计划《澜沧江—湄公河流域溢油突发环境事件应急与风险管控联合研究》,2020/06-2023/05,参加;
10.国家自然科学基金项目,《基于GNSS-R/光学联合感知模式的船基冰区溢油态势感知方法》,2025.01-2028.12,参与;
11.亚洲合作基金项目,《中国-东盟水上溢油遥感探测系统》,2023.01-2025.12,参与;
12.辽宁省重点研发计划《港口污染遥感识别与监测预警技术及装备》,2020/01-2022/12,参加;
13.大连市科技人才创新支持计划高层次人才团队《多平台高精度偏振光谱油污泄漏遥感探测系统》,2023/01-2025/12,参加;